For Better Performance Please Use Chrome or Firefox Web Browser

Remesan, R., Ahmadi, A., Shamim, M.A., Han, D., “Effect of Data Time Interval on Real-time Flood Forecasting”, 12(4):396–407, Journal of Hydroinformatics, 2010, doi:10.2166/hydro.2010.063.

 

Effect of data time interval on real-time flood forecasting

Renji Remesan, Azadeh Ahmadi2, Muhammad Ali Shamim and Dawei Han

1 Water and Environmental Management Research Centre, Department of Civil Engineering, University of Bristol, Bristol BS8 1UP

2 Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Rainfall–runoff is a complicated nonlinear process and many data mining tools have demonstrated their powerful potential in its modelling but still there are many unsolved problems. This paper addresses a mostly ignored area in hydrological modelling: data time interval for models. Modern data collection and telecommunication technologies can provide us with very high resolution data with extremely fine sampling intervals. We hypothesise that both too large and too small time intervals would be detrimental to a model's performance, which has been illustrated in the case study. It has been found that there is an optimal time interval which is different from the original data time interval (i.e. the measurement time interval). It has been found that the data time interval does have a major impact on the model's performance, which is more prominent for longer lead times than for shorter ones. This is highly relevant to flood forecasting since a flood modeller usually tries to stretch his/her model's lead time as far as possible. If the selection of data time interval is not considered, the model developed will not be performing at its full potential. The application of the Gamma Test and Information Entropy introduced in this paper may help the readers to speed up their data input selection process.

Keywords: artificial neural networks; data time interval; flood forecasting; gamma test; information entropy

 

 

Link To Online Resource:

http://www.iwaponline.com/jh/012/jh0120396.htm

Journal Papers
Month/Season: 
January
Year: 
2010